Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

Near-Rings and Near-Fields opens with three invited lectures on different aspects of the history of near-ring theory. These are followed by 26 papers reflecting the diversity of the subject in regard to geometry, topological groups, automata, coding theory and probability, as well as the purely algebraic structure theory of near-rings. Audience: Graduate students of mathematics and algebraists interested in near-ring theory.

Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.

"Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings. The forward note by Günter Pilz (Johannes Kepler University, Austria) explains about past developments and future prospects in the theory of nearrings and nearfields. Certain applications of nearrings are found in a few chapters. Some of the chapters are independent; however flow is maintained in all the chapters. It also include few chapters of exploratory approach."--Publisher's website.

The present volume is the Proceedings of the 18th International Conference on Nearrings and Nearfields held at the Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg, from July 27 OCo August 3, 2003. It contains the written versions of the lectures by the five invited speakers. These concern recent developments of planar nearrings, nearrings of mappings, group nearrings and loop-nearrings. One of them is a long and very substantial research paper The Z-Constrained Conjecture. They are followed by 13 contributions reflecting the diversity of the subject of nearrings and related structures. Besides the purely algebraic
Near- rings and near -ring modules are the natural non-linear generalization of rings and ring modules. The first occurrence of near-rings was in 1905 when Dickson introduced near fields. Near -rings are very closely related to the theory of varieties of groups, and have applications in non-abelian homological algebra. The group
-theoretic connection first appeared in work by H. Neumann 1954-1956. The theory of d.g near rings received a big boost when A. Frohlich published a series of papers in the period 1958-1962. In this book In this we study some topics from near-ring theory. This book contains five chapters. Chapter zero is an introduction.In chapter one we discuss some problems in matrix near rings.In chapter two we introduce the concept of M-cleavable near rings. chapter three is unit regular near rings. The last chapter is on semi ideals of near rings.

Near Rings, Fuzzy Ideals, and Graph Theory explores the relationship between near rings and fuzzy sets and between near rings and graph theory. It covers topics from recent literature along with several characterizations. After introducing all of the necessary fundamentals of algebraic systems, the book presents the essentials of near rings theory, relevant examples, notations, and simple theorems. It then describes the prime ideal concept in near rings, takes a rigorous approach to the dimension theory of N-groups, gives some detailed proofs of matrix near rings, and discusses the gamma near ring, which is a generalization of both gamma rings and near rings. The authors also provide an introduction to fuzzy algebraic systems, particularly the fuzzy ideals of near rings and gamma near rings. The final chapter explains important concepts in graph theory, including directed hypercubes, dimension, prime graphs, and graphs with respect to ideals in near rings. Near ring theory has many applications in areas as diverse as digital computing, sequential mechanics, automata theory, graph theory, and combinatorics. Suitable for researchers and graduate students, this book provides readers with an understanding of near ring theory and its connection to fuzzy ideals and graph theory.

This book offers an original account of the theory of near-rings, with a considerable amount of material which has not previously been available in book form, some of it completely new. The book begins with an introduction to the subject and goes on to consider the theory of near-fields, transformation near-rings and near-rings hosted by a group. The bulk of the chapter on near-fields has not previously been available in English. The transformation near-rings chapters considerably augment existing knowledge and the chapters on product hosting are essentially new. Other chapters contain original material on new classes of near-rings and non-abelian group cohomology. The Theory of Near-Rings will be of interest to researchers in the subject and, more broadly, ring and representation theorists. The presentation is
elementary and self-contained, with the necessary background in group and ring theory available in standard references.

Most topics in near-ring and near-field theory are treated here, along with an extensive introduction to the theory. There are two invited lectures: 'Non-Commutative Geometry, Near-Rings and Near-Fields' which indicates the relevance of near-rings and near-fields for geometry, while 'Pseudo-Finite Near-Fields' shows the impressive power of model theoretic methods. The remaining papers cover such topics as D.G. near-rings, radical theory, KT-near-fields, matrix near-rings, and applications to systems theory.

This work presents new and old constructions of nearrings. Links between properties of the multiplicative of nearrings (as regularity conditions and identities) and the structure of nearrings are studied. Primality and minimality properties of ideals are collected. Some types of 'simpler' nearrings are examined. Some nearrings of maps on a group are reviewed and linked with group-theoretical and geometrical questions. Audience: Researchers working in nearring theory, group theory, semigroup theory, designs, and translation planes. Some of the material will be accessible to graduate students.

Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.

It is by no means clear what comprises the "heart" or "core" of algebra, the part of algebra which every algebraist should know. Hence we feel that a book on "our heart" might be useful. We have tried to catch this heart in a collection of about 150 short sections, written by leading algebraists in these areas. These sections are organized in 9 chapters A, B, . . . , I. Of course, the selection is partly based on personal preferences, and we ask you for your understanding if some selections do not meet your taste (for unknown reasons, we only had problems in the chapter "Groups" to get enough articles in time). We hope that this book sets up a standard of what all algebraists are supposed to know in "their" chapters; interested people from other areas should be able to get a quick idea about the area. So the target group consists of anyone interested in algebra, from graduate students to established researchers, including those who want to obtain a quick overview or a better understanding of our selected topics. The prerequisites are something like the contents of standard textbooks on higher algebra. This book should also enable the reader to read the "big" Handbook (Hazewinkel 1999-) and other handbooks. In case of multiple authors, the authors are listed alphabetically; so their order has nothing to do with the amounts of their contributions.

This present volume is the Proceedings of the 14th International Conference on Near rings and Nearfields held in Hamburg at the Universitit der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of these conferences took place in 1968 at the Mathematische Forschungsinstitut Oberwolfach, Germany. This was also the site of the conferences in 1972, 1976, 1980 and 1989. The other eight conferences held before the Hamburg Conference took place in eight different countries. For details about this and, more over, for a general historical overview of the development of the subject, we refer to the article "On the beginnings and development of near-ring theory" by G. Betsch [3]. During the last forty years the theory of nearrings and related algebraic structures like nearfields, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features. In its position between group theory and ring theory, this relatively young branch of algebra has not only a close relationship to these two more well-known areas of algebra, but it also has, just as these two theories, very intensive connections to many further branches of mathematics.

The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white. In any human field, a Smarandache n-structure on a set S means a weak structure \(w(0) \) on S such that there exists a chain of proper subsets \(P(n-1) \) in \(P(n-2) \) in?in \(P(2) \) in \(P(1) \) in S whose corresponding structures verify the chain \(w(n-1) \) includes \(w(n-2) \) includes? includes \(w(2) \) includes \(w(1) \) includes \(w(0) \), where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms). This book is referring to a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, i.e. a weak structure \(w(0) \) on S such that there exists a proper subset \(P \) of S, which is embedded with a stronger structure \(\{w(1)\} \). Properties of Smarandache fuzzy semigroups, groupoids, loops, bigroupoids, biloops, non-associative rings, birings, vector spaces, semirings, semivector spaces, non-associative semirings, bisemirings, nearrings, non-associative near-ring, and binary-rings are presented in the second part of this book together with examples, solved and unsolved problems, and theorems. Also, applications of Smarandache groupoids, near-rings, and semirings in automaton theory, in error correcting codes, and in the construction of S-sub-biautomaton can be found in the last chapter.
Near-rings and near-ring modules are the natural non-linear generalization of rings and ring modules. The first occurrence of near-rings was in 1905 when Dickson introduced near fields. Near-rings are very closely related to the theory of varieties of groups, and have applications in non-abelian homological algebra. The group-theoretic connection first appeared in work by H. Neumann 1954-1956. The theory of d.g near rings received a big boost when A. Frohlich published a series of papers in the period 1958-1962. In this book, we study some topics from near-ring such as abstract affine near rings, matrix near rings and generalized matrix near rings. In chapter three let A be an abstract affine near ring, N be a faithful near ring A-module and n be a positive integer. In this book we define the nxn generalized matrix near ring over A using the faithful near ring A-module N.

Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, •) is a semigroup. For all a, b, c in N we have

(a + b) • c = a • c + b • c.

A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, •) is a group. For all a, b, c \ P we have

(a + b) • c = a • c + b • c.

A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).

This volume consists of seven papers related in various matters to the research work of Kostia Beidar †, a distinguished ring theorist and professor of National Ching Kung University (NCKU). Written by leading experts in these areas, the papers also emphasize important applications to other fields of mathematics. Most papers are based on talks that were presented at the memorial conference which was held in March 2005 at NCKU.

Copyright code : 1a5652f3e531f08c5b9ccf1b3b0ecd37